

 1

Reliable Multicore Processors for NASA Space Missions
Carlos Villalpando, David Rennels, Raphael Some

carlos@jpl.nasa.gov, rennels@cs.ucla.edu,
rsome@jpl.nasa.gov

Jet Propulsion Laboratory
4800 Oak Grove Dr. Pasadena, CA 91109

Manuel Cabanas-Holmen
manuel.f.cabanas-holmen@boeing.com

The Boeing Company
PO Box 3707, MS 42-57, Seattle, WA 98124

Abstract—The current trend in commercial processors of
moving to many cores (30 to100 and beyond) on a single
die poses both an opportunity and a challenge for space
based processing. 1 2 The opportunity is to leverage this
trend for space application and thus provide an order of
magnitude increase in onboard processing capability. The
challenge is to provide the requisite reliability in an
extremely challenging environment. In this paper, we will
discuss the requirements for reliable space based multicore
computing and approaches being explored to deliver this
capability within NASA's extremely tight power, mass, and
cost constraints.

Topics include: i) discussing the salient issues in achieving
fault tolerance in a many-core chip, ii) describing the
architecture of an existing commercial many-core processor
(Tilera Tile64), iii) using it for an examination of the design
issues needed for increasing levels of reliability, and iv) a
discussion of how the Tile64 is being adapted for space as
the Maestro processor and of the tradeoffs involved in
making it a practical space design.

The OPERA Maestro processor based on the Tilera TILE64
architecture shows potential to give high processing
performance at an error rate equivalent to current space
deployed uniprocessor systems. We will discuss potential
enhancements to the Maestro processor to address NASA
specific performance and reliability requirements.

TABLE OF CONTENTS

1. INTRODUCTION ... 1
2. THE TILE64 ARCHITECTURE ... 2
3 TILERA FAULT-TOLERANCE CHALLENGES 5
4. MAESTRO.. 6
5. FAULT TOLERANCE DISCUSSION 7
6. CONCLUSION .. 11
ACKNOWLEDGEMENTS .. 11
REFERENCES .. 12
BIOGRAPHY .. 12

1. INTRODUCTION

Although current multicore processors with two to four
cores have become widespread, it is becoming clear that the
next generation of this technology will replicate a much
large number of smaller, more basic processors, creating

1978-1-4244-7351-9/11/$26.00 ©2011 IEEE.
2 IEEEAC paper #1163, Version 5, Updated November 22, 2010

what is termed many-core” processors. Examples of
multicore machines include the HyperX from Coherent
Logix, the 64-core TILE64 from Tilera [1] and a new
experimental 80 core processor from Intel [2]. These
processors consist of tens to low hundreds of homogenous
processing elements, connected by a high speed mesh or
crossbar grid network. The parallelism that exists on these
processors can improve not only system level performance,
but the granularity available from a large number of tightly
integrated cores can speed up individual tasks or
applications as well. Various NASA programs and missions
are in need of reliable and flight qualifiable high
performance processing for both critical applications and
on-board science processing.

By using many-core processors, high performance can be
obtained at drastically reduced mass and volume, and
compared to an equivalent multicomputer with computers
on separate chips and boards. This paper focuses on two
salient design issues critical to achieving a high degree of
dependability in these systems: (1) Redundancy for
Permanent Fault Recovery and (2) Mechanisms for
Detecting and Recovering from Transient Errors. We start
with a brief discussion of the issues involved then describe
the functionality of a real multicore space computer and
discuss how these issues might be dealt with in that context.

Our discussion is anchored on one such manycore system
that is under consideration. The Maestro processor
developed by the OPERA program is a radiation hardened
by design processor based on the TILE64 processor by
Tilera, We will discuss the TILE64 and the changes made
by OPERA and how it addresses fault tolerance
requirements.

Redundancy for Permanent Fault Recovery

There is a great deal of inherent redundancy in large
multicore chips (typically with dozens of processor cores,
redundant I/O and memory ports, power supply pins, etc) to
allow degraded recovery from a wide range of permanent
faults. Thus upon failure of a processor core,
interconnection switch, I/O or memory port, the computing
load can be shifted to other resources on the chip. This
approach is imperfect since there are some faults that can
disable the whole chip, but it can lead to considerably
improved overall reliability, i.e., the length of time that the
computer can be expected to provide required performance
in space. However, the effectiveness of this approach
depends upon a multicore chip design that is optimized to
minimize the probability of single failures that disable the

Aerospace Conference, 2011 IEEE , vol., no., pp.1-12, 5-12 March 2011

doi: 10.1109/AERO.2011.5747447

 2

whole chip, and an architecture that can efficiently work
around failed cores, memory and I/O elements. Redundancy
can be implemented as fine grained structures such as
triplicated modules, robust latches, and structured code, or it
can be implemented as gross methods such as duplicating
effort across multiple processing elements managed by
software checking

Detection and Recovery from Faults and Errors

In order to recover from a permanent fault or transient error,
it is necessary to detect that an error has occurred and to
provide an automated recovery action to restore
computations. Key issues here are: i) how effective is the
error detection provided? ii) to what degree can
computations be correctly restored after the error has been
detected? and iii) how is the recovery mechanism itself
protected? Since the processors on many-core chips are
unlikely to have comprehensive fault tolerance at the
hardware level, this must necessarily depend upon software-
implemented fault tolerance. Software implemented fault
tolerance (SIFT) depends upon a reliable messaging system
and isolation of faults to individual processors so that
protective redundancy can be effectively employed –
especially in preventing errors from causing data damage
that escapes virtual memory protection boundaries. These
present real challenges for multicore chip designs. Before
exploring these issues it is useful to explore alternatives.

Gross Detection and Recovery Mechanisms— If very gross
detection mechanisms are employed (such as looking for a
heartbeat or crash from a machine and activating a spare),
recovery consists of trying a rollback recovery and if it is
not successful, throwing out existing computations followed
by reloading and rebooting the machine. In this case, errors
are likely to have propagated before detection and may have
produced incorrect outputs or damaged system state –
making recovery of computations problematic. This
approach is typical of many existing spacecraft where few
errors are expected during a space mission due to radiation
hardening of hardware parts. In this case, another spacecraft
computer (often a smaller, extremely radiation hardened
processor) can intervene, or specially designed logic circuits
can be used to provide “safe hold modes”. These
architectures provide a hierarchical level of protection above
that of the standard operational spacecraft avionics. The
applicability of these gross techniques may be adequate for
non-critical applications depending on the effectiveness of
radiation hardening techniques and the mission
requirements, e.g., if a mission only expects a handful of
SEUs during a mission and the probability of correct
recovery using these techniques is around 99%. Validating
the adequacy of this approach depends, in turn, upon having
thorough radiation testing for the parts.

Comprehensive Detection and Recovery Mechanisms—
These are designed to detect errors before an incorrect
output is generated and before error propagation reduces the
chance for recovering correct computations. When an error

is detected, recovery is implemented using well-known
checkpointing and rollback techniques. Here computations
are checked at specified test points before outputs are
generated, and state is updated using redundancy built into
the computations. Highly structured computations can use
software methods such Algorithm Based Fault Tolerance
(ABFT) quite efficiently (these are really algorithm based
error checking techniques), but unstructured computations
must use replicated computations with comparisons. The
software that implements the detection and recovery
functions is preferably triplicated and voted so that it cannot
be disrupted by a single fault.

This approach has been demonstrated in current
multicomputer cluster based systems that depend upon
independence of faults in different circuit processors. But to
use this for a many-core architecture i) the probability of
faults in common circuits such as the clock and overall
control must be greatly minimized, ii) a dependable
communication mechanism must allow a processor tile to
know the source of a message and that received messages
are correct, and iii) strong virtual memory protections must
be provided to prevent errors in one processor core,
communications link, or peripheral device from affecting
other cores.

2. THE TILE64 ARCHITECTURE

Overview[1]

The Tile64 system is a multi-core processor system on a
chip containing an array of processing elements and data
routers, called switch engines, connected in a Manhattan
style grid as illustrated in Figure 1. Each tile in the array
contains a 32 bit 3-way VLIW general purpose Processing
Element (PE) and a data router with five data channels.
Tilera has released updated versions of this architecture in
the TilePro and TileGX series. This paper is limited to the
architecture as it exists in the Tile64 series only. There are
enhancements that are designed into the the TilePro and
TileGX series that increase fault tolerance performance
above that of the TILE64, but are outside of the scope of
this document.

The PEs are designed to operate independently, and each
contains its own Level 1 and Level 2 caches, with a TLB
and DMA engine. Each PE is capable of running a full
featured operating system such as Linux or VxWorks, or
running bare applications. The L1 and L2 caches are
designed so that shared memory programming is fully
supported, with either hardware supported or user managed
cache coherency.

At the core of the Tilera architecture is a mesh network that
interconnects the Tilera tiles, and I/O subsystems. There are
five parallel networks in the mesh. For each, the path
between modules is 32-bits wide, the same as words and
addresses in the tiles. Of the five networks, four are
designated dynamic networks. They are packet switched,

 3

and wormhole routed, and each is dedicated to a particular
function, i.e.,. memory access requests and memory data
transfer, messaging between applications programs, and OS
messages. The fifth is called the static network. It does not
provide packet address decode and routing, but instead
provides fixed, pre-programmed routing. It can be
programmed as part of a parallel application to move data in
user-specified static patterns.

Figure 1: General architecture

Figure 2: Single Tile Overview

The five networks are a Static Tile Network (STN), a User
Dynamic Network, (UDN), a Memory Dynamic Network
(MDN), a I/O Dynamic Network (IDN), and a Tile Dynamic
Network (TDN). A simplified block diagram of an
individual tile is shown in Figure 2 and a summary of its
functionality is listed in Table 1.

The Dynamic networks are packet based, are “fire and
forget” and use “wormhole routing.” Their routes do not
need to be set up ahead of time. Each tile Switch Engine

can route multiple packets per network at the same time.
Upon receipt of a packet header, the Switch Engine
examines the header to determine which direction to route
the packet. The packet is routed using a dimension ordered
routing policy. The packet is first routed along the X
dimension until the destination column is reached, and then
it is routed along the Y dimension until the destination tile is
reached.

A simplified diagram of the Switch Engine is shown in
Figure 3.

Dynamic Networks:

UDN (User Dynamic Network) —The UDN is a user
accessible routing network. It is directly accessed by the
processor via direct reads and writes to special purpose
registers. Because it is tightly integrated with the ALU, low
latency blocking sends and receives are available. In this
mode, if the network is unable to accept an outgoing packet,
or an incoming packet is not yet available, the processor will
sleep until the network is ready.

Figure 3: Switch Engine unit, each incoming direction
has a multiple word queue for flow control. Each tile
contains one switch unit per network.

A field in the dynamic header tag word specifies a demux or
mailbox queue. Each processor can send to or receive from
4 queues on each tile. An incoming packet that is meant for
the receiving tile examines the tag and places the packet in
the appropriate queue. These queues are accessible by the
user through special purpose registers on each PE that are
allocated for each queue. This allows differently tagged
messages to be serviced out of order. Non tagged messages
are placed in a “catch-all” queue, and are serviced in the
order they are received. Each queue is a part of a larger
packet memory that is shared with the IDN. Partitioning of
the shared packet memory is performed by system level
software and is not modifiable by the user. When a packet
arrives at a destination, an interrupt is triggered at the

Cache Engine
(L1/L2, TLB,

DMA)

Processor
Engine

(64 bit VLIW)

Switch Engine
(5 networks)

M
em

Re
q

U
D

N

ST
N

ID
N

M
D

N

TD
N

UDN

STN

IDN

MDN

TDN

UDN

STN

IDN

MDN

TDN

U
D

N

ST
N

ID
N

M
D

N

TD
N

 4

destination processor and a flag is set to indicate which
queue has data available. The presence of a queue buffer
allows multiple incoming packets to be stored in the switch
engine and allows the PE to process the incoming packets at
its own pace, and allows the network to be freed up for
routing other packets.

There is no data protection mechanism described for the
packet queue memories or the queue management. There is
program access protection for each network at each PE.
Access to the networks can be limited to privileged
instruction levels.

To prevent sending messages across a user defined
boundary, the Tile64 utilizes “hardwall” protection scheme.
The hypervisor running on the local PE specifies, for each
output port, if message traffic is allowed to leave that port.
This hardwall is implemented at each tile such that if a
message is to be routed to a protected port, the message is
not sent through that port, and instead an interrupt will be
triggered on the tile’s local PE. A similar hardwall
mechanism exists for the Static Data Network.

MDN (Memory Dynamic Network)—The MDN is used to
transfer data between external memory and the processor
caches and for responding to requests on the TDN. It
operates as a dynamic network, but does not have the
hardwall mechanism of the UDN and STN networks. It is
not user accessible and is accessed only by the L2 cache
engine.

TDN (Tile Dynamic Network)—The TDN is used to initiate
tile-to-tile memory requests, i.e., to move data between tile
caches. The responses for requests on the TDN are
delivered on the MDN. The TDN is only accessible by the
L2 cache engine.

IDN (I/O Dynamic Network)—The IDN is the primary
network for system level software such as a hypervisor or
guest operating system to control and coordinate messages
and system level operations such as task spawning,
processor allocation, and device management. It also is the
primary method of communicating with the various I/O
devices on the chip. It operates as a dynamic network with
two multiplexed channels per processor similar to the four
queues of the UDN. The queues are part of a larger packet
memory shared with the UDN and operate identically to the
UDN with the exemption of only having 2 queues instead of
4. The IDN is a privileged network and is not accessible to
user level code. The IDN, along with the STN, is also used
by boot level code to distribute PE configuration and initial
boot code to each processing element. The hardwall
protection mechanism is also implemented for the IDN and
operates identically to the UDN’s hardwall protection.

The Static Network:

STN (Static Network)—The STN provides low overhead,
low latency tile to tile communication to transfer operands

and is meant for repetitive and well known communication.
Data flows through the network a word at a time with no
concept of discrete packets or any higher level of
abstraction. Low overhead is attained by programming a
routing processor in each tile ahead of time with a fixed
route map. The switch engine in each processor is
programmed with a destination direction for each source
direction. The network remains configured for that pattern
until the switches are changed to another routing
configuration. A message can be routed to one or more
output ports. A message can be transferred from tile to tile
as fast as 1 clock per word per node traversed. There is also
flow control on a per tile hop basis.

Each link buffers three words of storage, and the sender
therefore begins with three credits. A sender decrements its
credit count when it sends a word, and increments the credit
count when it receives acknowledgement from the receiver.
The send/receive flow control handshaking is handled
entirely in hardware by the switch engine. A sender can
only send when its count is non-zero.

The STN incorporates hardwall protection. There is no
deadlock prevention for this network as it is not needed
since routing is determined by software. If a failure of a
routing processor is detected, it is possible to re-program the
routing of the static network to avoid using the failed
routing processor.

Table 1 summarizes the data networks.

Table 1. Network types and function

Network Access
type

Routing
type

Hardwall Used for

STN User Static YES User
messaging

UDN User Dynamic YES User
messaging

MDN System Dynamic NO Memory
access

TDN System Dynamic NO Memory
Access

IDN System
(USER if
not
running
an O/S)

Dynamic YES I/O and
System
Messaging

Network Fault Tolerance Issues:

None of the Switch Engines employ internal redundancy
(e.g. parity) in hardware for error detection. This is a
potential reliability problem in a space environment as will
be discussed later.

The Memory System

Main Memory—The memory system allows four channels
of RAM each connected to the switch network by a DDR2

 5

controller. The DDR2 controllers run at 400MHz and are 64
bits wide, with an optional 8 bit ECC with single bit error
correction, double bit error detection, (SEC/DED)
protection. Each memory controller is connected to the
internal data network by three MDN ports, and one IDN
port.

The DDR2 controllers accept read and write memory
packets from the tiles’ cache controllers or from the DMA
engines in the I/O interfaces via the MDN -- returning data
packets upon receiving reads and returning an
acknowledgement packet for writes. A complex queue
controller can reorder requests for increased performance.
Control packets are also communicated via the IDN.

Caches and Virtual Memory—Each PE contains two caches;
a split L1 cache and a combined L2 cache. The L1 cache
contains an 8KB write-through data cache, and an 8KB
instruction cache. The L2 cache is a 64KB combined
instruction and data write-back cache, and includes a DMA
engine to handle cache misses and write backs. The cache
and TLB properties are shown in Table 2 – along with a
summary of their error protection.

Table 2: Data on Cache and TLB
 Size Type Line

Size
Write
Policy

Protection

L1
Instruction

8KB Direct 64B NA 64-bit parity

L1 Data 8KB 2-way
associative

16B Write
through

8 bit parity

L2 64KB 2 way
associative

64KB Write
back

8 bit parity

Instruction
TLB

8
entries

Fully
associative

Data TLB 16
entries

Fully
Associative

Memory-Cache Fault Tolerance Issues

Although the caches are protected using an error detecting
code, the tags and the TLBs are not. The TLBs on the
TILE64 consist of processor flops and logic cells, so from
an error rate point of view, errors in the TLB would be
lumped in the same category as processor errors.
Furthermore, although the L2 cache is write-back, there is
no single bit error correction, so error recovery will be
complicated and time consuming. Hardware-based error
detection is not provided for the TLB, cache control
sequencers and the DMA controllers, so errors may violate
virtual memory protection boundaries

Input/Output—There are several I/O options available on
the Tile64. As well as the 4 DDR2 controllers, there are 2
10Gb/s XAUI ports, two 10/100/1000 Mbit Ethernet MACs,
an HPI interface, 4 banks of 16 bit General Purpose I/O, a 2
wire UART, an I2C port, a Serial ROM port, and 2 4-lane
PCIe ports. Each of these I/O options are connected to the
internal PE mesh by I/O “shims.” The shims provide a
protocol translation between the I/O device and the internal
data networks. The shims can perform DMA to and from
on chip caches and external memory.

I/O Fault Tolerance Issues:

Since none of the intercommunications networks use
hardware based error detection, end-to-end protection of
data presents a reliability problem as does protection of
local hardware controllers (e.g. state machines) and DMA
controllers in the and DDR2 interfaces, cache’s cores, and
I/O devices.

Processing Elements

All the processing elements on the chip are identical. They
are a 64-bit, VLIW processor. Each 64 bit instruction word
is called an instruction bundle and can encode two or three
instructions. Each bundle can handle two ALU and one
Load/Store instruction.

Processing Element Fault Tolerance Issues

In order to achieve low power and high performance in the
commercial marketplace, it was not to be expected that the
PEs implement concurrent error detection. Software-Based
Fault-tolerance can be expected to address this problem.
However, it must be noted that when a tile runs the
hypervisor or an underlying OS computing errors can
violate virtual memory boundaries or corrupt system state
tables. This provides a challenge in implementing fault
tolerance.

3 TILERA FAULT-TOLERANCE CHALLENGES

The TILE64 has used the standard low cost redundancy
techniques common for commercial parts to improve its
reliability by adding error detection codes to caches and
main memory. Since the majority of the active area on the
chip lies in these areas, most errors are covered, and the
undetected error rate should be greatly reduced. In addition
a hardwall protection scheme for the switch network and
virtual memory protection is provided to limit error
propagation. There is a great deal of redundancy on the
chip with a rudimentary way to work around tile faults.
Although its design point is well chosen for the terrestrial
market (its intended application), where if a processor fails
one simply replaces a board, considerably more must be
done to achieve adequate dependability in space. In space
the transient error rate is likely to be three to four orders of
magnitude higher than on Earth due to ionizing radiation,
and many missions require long unmaintained life.

Returning to Section 1 above we examine potential
deficiencies of the Tile64 for space use and in the following
Section 4 we will examine what has been done to address
some of these problems in the new radiation hardened
Maestro Chip. This is not a fault of the TILE64, as with
typical commercial parts, fault tolerance for space
applications is not a priority or design requirement. The
OPERA program was tasked to build on the TILE64
architecture to add fault tolerance.

 6

Redundancy for Permanent Fault Recovery Revisited

Due to the dimension ordered routing scheme of the Tile64,
when a tile router fails the other tiles in the row and column
in which the failure occurred are blocked in some of their
communications. This can be worked around by a
rearrangement of the programs in all of the various tiles
(possibly with software relaying at a significant
performance cost), but it requires shutting the system down
and restarting after redesigning the communications
patterns. An increase in flexibility of the routing algorithm
could make this recovery easier and more efficient. By
providing a capability to automatically route around a failed
tile, a spare tile anywhere could be used to replace it.
Furthermore, when implementing software-based fault
tolerance, it is useful for a tile to be able to send a message
over two disjoint paths to gain a high degree of assurance
that it has been delivered – even in the face of a new
permanent fault. It appears that this could be done without
overly complicating the Tile64 routing design possibly with
an “avoid row/column” feature addition to the current
dimension ordered routing policy. If only the processing
element of the tile fails, the router is still functional, capable
of routing packets, however functionality may be slightly
degraded. Answering hardwall interrupts on that tile and/or
managing static network routes on that tile may be difficult
depending on the failure mode of the processing element.

A more vexing problem is that of single faults or failures in
critical shared logic that can disable the whole chip or cause
errors in multiple tiles that can only be recovered by a
system restart.

Detection and Recovery from Faults and Errors Revisited

The Tile64 chip has caches that use hardware based error
detection, but much of the rest of the chip has little or no
hardware support for error detection. It is possible to
partially compensate for this by using software-based fault
tolerance techniques, but some errors will go undetected
damage system state and require a reboot/restart to restore
functionality. For example, it is possible to add redundancy
to some packets using software to allow concurrent error
detection in some of the dynamic networks and the static
network (IDN, STN, and UDN). This cannot be done for the
Memory Dynamic Network (MDN) and the Tile Dynamic
Network (TDN) because they are totally hardware
controlled. Since they do not provide hardware checking,
they remain a serious problem. A single bit error in these
networks can i) go undetected, ii) and damage a virtual
memory space that is different than that of the currently
executing process. Similarly the various DMA controllers
in the caches, processors or I/O devices may have
undetected errors that can create similar damage. This
makes Comprehensive Detection and Recovery Mechanisms
impossible - resulting in incorrect outputs or the inability for
a successful rollback recovery.

Furthermore, since individual computations are being
carried out in largely unprotected processors, these

processors may have undetected errors while running the
Hypervisor. These errors may, in turn, create errors in the
DMA controller settings or in shared tables for the
hypervisors. This can make error recovery impossible, -
corrupting critical state and requiring a reboot/restart to re-
establish computing.

Reducing the Effective Error Rate by Radiation Hardening

If the error rate in space can be dramatically reduced then
Gross Detection and Recovery Mechanisms (see Section 1)
may be adequate to meet the needs for some spacecraft
applications. The commonly used technique for doing this
is to redesign chips to be more resilient using Radiation
Hardening by Design. If transient errors can be reduced to a
very small number during the life of a mission, then most
(perhaps 90%) of them will be automatically recovered, and
a very rare reboot/restart may be an acceptable price for the
orders of magnitude increase in power-performance
provided by these processors. This is the approach taken by
the OPERA Program described in section 4.

4. MAESTRO

Under the OPERA program, Boeing has developed the
Maestro processor, a 49 core version of the Tile64 for space
applications.[3] The main approach Boeing used when
designing the Maestro processor was to make the new
design as functionally equivalent as possible to the original
Tile64 design, with the addition of a floating point unit on
each PE, and I/O options customized for the Maestro
application. To that end, they received a full RTL
description of the Tile64 from the Tilera Corporation and
worked from that dataset. Boeing used their 90nm bulk
CMOS RHBD libraries to increase the radiation tolerance of
the processor.

In addition to using their RHBD libraries, Boeing has
modified the various I/O devices on the Maestro to meet
radiation tolerance requirements, and to tailor I/O options to
OPERA program requirements. PCIe was removed for
additional XAUI ports, and additional JTAG features were
added.

Floating Point Unit

Boeing added the Aurora FPU used in Sun Microsystems
Sparc chips for the FPU. It is an IEEE-754 single/double
precision FPU with multiply-accumulate capability. It is
interfaced to the PE via special purpose registers in the PE
and custom interrupts for control, data transfer, and
synchronization. Interface to the FPU via special purpose
registers was chosen in order to avoid having to modify the
processor to add extra instructions and exemptions. The
FPU instead operates as a “coprocessor” instead of an
integrated submodule of the main processor.

 7

Memories

The on chip memories such as caches and I/O buffers were
modified for additional fault tolerance capability.
Artisan/ARM SRAM cells were used and each memory
bank was rearranged in order to interleave bits. Bit
interleaving physically spreads out logically adjacent bits in
order to reduce the probability of multi-bit errors in a single
word.

There are three types of SRAM banks on the Maestro:
L1/L2 cache memory, DDR memory shim memory, and
Ethernet shim memory. Error Detection and Correction
(EDAC) was added to all three types of memory. Single-bit
Error Correction/Double-bit Error Detection (SEC/DED) is
the primary method of protection for those memories, with
some exemptions.

Also included in the Maestro design is an enhancement of
the protection of the L1 cache. On the Tile64, a parity error
causes a processor exemption. On the Maestro, the
intention was that a parity error instead causes a cache miss,
causing a re-load from L2 cache, which corrects the error.

On-chip registers

There are many on-chip configuration registers, memory
FIFOs, and other memory cells. These are protected by
Boeing RHBD standard cells. Although these storage
devices are not EDAC protected in Maestro additional
protection is provided by software routines that compare
their values against a known good copy of their values
stored in EDAC protected memory.

In addition to the Single Event Upset (SEU) resistance of
the Boeing standard RHBD cells, the MAESTRO includes
additional mitigation for Single Event Transients (SETs) by
incorporating temporal filtering on the data, scan and clock
inputs. Depending on the timing requirements and criticality
of the node, the temporal filter may be included on all, some
or none of the inputs.

External DDR

The Maestro includes a new DDR module that is both
radiation hardened and adds DDR1 functionality as well as
the existing DDR2 functionality. The new DDR controller
uses the existing internal data mesh shim, but adds the
ability to run external Built-in-self-test on DDR memories
as well as a loopback test for radiation testing without
needing external memories.

5. FAULT TOLERANCE DISCUSSION

This paper is most concerned with the fault tolerance issues
of a potential enhancement of the Maestro architecture,
henceforth referred to as “Maestro-enhanced.” Three
approaches for implementing fault-tolerance on the
enhanced processor are outlined for purposes of discussion
and to illuminate possible tradeoffs. The baseline starting

point is the Tilera/Boeing-Maestro architecture; the
suggested three approaches propose adding software and
hardware to achieve improved fault tolerance. In order that
the fault tolerance enhancements be implementable with
minimal changes to the design, and thus minimal cost and
risk, this paper focuses on “low hanging fruit”, i.e.,
relatively straightforward approaches to improving
reliability through easily attainable fault tolerance
improvements requiring minimal modification of the
hardware, system software and associated development
tools. The suggested approaches represent incremental
changes of increasing complexity for increased fault
tolerance – hopefully exposing what can be done, what is
gained, and how much it costs.

Maestro – The Starting Point

From a fault tolerance standpoint, Maestro has greatly
reduced the Tile64 Single Event Upset (SEU) rate by
Radiation Hardened By Design (RHBD) circuits in its logic
design and by adding error codes in cache memories. The
SEU rate that has been achieved has not yet been fully
determined, but it is expected that the SEU error rate of a
processor core or other subsystem of equivalent complexity
has been reduced to somewhere in the neighborhood of
typical radiation-hardened uniprocessors previously used in
space applications. The overall Maestro chip SEU error rate
is probably higher than earlier single radiation hardened
spacecraft uniprocessors due to its higher overall complexity
of 49 cores and larger physical size. The permanent fault
rate from reliability wear-out mechanisms is also probably
higher than earlier chips, but there is sufficient circuit
redundancy on chip to recover from many of the permanent
faults – at a somewhat reduced level of performance.
Permanent fault recovery algorithms (on-chip redundant
workarounds) are still being developed for the Maestro
processor.

Although error correcting codes have been used in
memories and caches, most of the rest of the Maestro chip
(49 CPUs, five intercommunication networks, DMA
controllers, finite state machines, etc.) have no hardware
redundancy to allow local error detection or correction,
since its design philosophy depends upon the RHBD circuit
design to reduce SEUs to a negligible rate. The SEU rate
reduction techniques may not be sufficient, so we look for
adding additional fault-tolerance in Maestro-enhanced.

Before discussing possible fault-tolerance alternatives it is
useful to review a selected set of typical spacecraft
dependability requirements.

Typical use cases for on board processing

Some of the possible uses of processing on spacecraft are as
follows, from least critical to most critical:

On board instrument processing (aka payload
processing)—This use is typically has the lowest reliability
and fault tolerance requirement set, but may have the

 8

maximum requirement on throughput and power vs.
performance ratios. It involves non-real time processing of
instrument data for analysis or downlink. It does not
perform the main Command and Data Handling (C&DH)
processing function. The aim is to process at the best of its
ability, detect and report any uncorrected errors, and solely
operate as a subsystem support role. Lifetime use is often
quite lengthy, i.e., the sensor may be actively used for long
periods of mission time, thus the associated processor has a
concomitantly long mission life requirement.

On board navigation sensor processing—This function has
an increased performance requirement. This use typically
involves processing of navigation sensors such as inertial
units, radar sensors, LIDARs and navigation cameras.
Typically this function adds a tighter real-time processing
requirement and higher reliability, fault tolerance and error
handling ability. The processing must be fast enough for the
navigation control loop, be reliable during the performance
period, and report correct results, or report when a result is
suspect. Depending on specific mission use, this function
may have a relatively short lifetime, e.g., minutes to days
for an entry descent and landing operation, or it may have a
significantly longer life time, e.g., years, for rover
autonomous navigation operations.

On board robotic C&DH—This function typically has a
lower processing throughput requirement, but still retains
the real-time requirements, and adds greatly to the
availability requirement. This function manages spacecraft
health and operation. Availability requirements will dictate
whether a single processor or multiple redundant processors
are required. In future systems, it is expected that this
function will grow in required throughput as model based
onboard mission and spacecraft health management
technologies are matured and incorporated into next
generation missions.

Human Life Critical Systems—This is the most stringent of
all use cases with respect to reliability and fault tolerance.
Any function that affects critical aspects of a human flight
will add heavy requirements for availability and reliability.
Single processor solutions, regardless of the reliability,
performance, or dependability of the device will never be
sufficient. Multiple levels of redundancy will be required at
the system level in a fault tolerance hierarchy. Counter
intuitively, because these systems require this high level of
redundancy regardless of the device level capability, a
somewhat less reliable computing component may be
utilized. In other words, inasmuch as the system must pay a
penalty in mass, power, and volume anyway, less reliable
parts can be used! This approach has been used to
significant advantage in the Constellation Orion CEV
design, where commercial (non-radiation hardened)
components are used with massive redundancy to provide
high performance computing in human life critical systems.

General Requirements for Use on Spacecraft

Typical

Most of these requirements are specified in rates in order to
make them more relevant to potential users and to reflect the
effects of RHBD already employed in Maestro.

(1) Maestro-enhanced shall recover from errors and faults
autonomously –without intervention from the ground.
Mean time between failure to recover events, λfra ,
might be specified e.g., values of 5 to >100 years
depending upon the criticality of the application and
the availability of ground support.

(2) The rate of incorrect outputs shall be less than one
every Nce years. (This variable may range from 0.5 to
>100 for different criticality of applications.)

(3) Computational Integrity is the probability that when a
computation is recovered after an error or fault that it
can be correctly completed, i.e., no computations were
lost and the end state of the computation is correct.
This is the opposite of situations where a computer
must be rebooted in order to recover. A recovery
without computational integrity may occur when state
data is lost through latent errors, input buffer
overflows during recovery due to excessive recovery
delays, etc.

(4) The availability is Nav, the probability that the system
is “up” and ready to use at any given time. Typical
values of Nav should be in the range of 0.9995 or
higher.

More Stringent Requirements for Real Time Control
Systems for Unmanned Spacecraft

(5) Typically real-time applications must be synchronized,
and worst case timings must deliver correct and timely
results in the presence of all worst-case: i) behavior of
programs running, ii) data traffic in the shared
communication system, and iii) any reasonably
expected error/fault recovery being conducted in the
system.

(6) Recovery time from errors must be bounded.
Typically critical hard real time programs must be run
redundantly in order to “operate through” errors.

(7) These redundant copies must be run in fault-
containment regions to prevent correlated errors/faults
from disabling their function.

(8) Reliability is the probability that correct operation
continues throughout the mission. Typical required
values are > 0.9995.

Human Life Critical Systems cannot be implemented
without redundant copies of Maestro-enhanced with
independent power supplies, and I/O because there is always

 9

the risk of catastrophic failure of a single chip and its
supporting circuits. Severe requirements on containment
regions and execution of redundant computation in these
regions MUST be maintained. However a single Maestro-
enhanced may be sufficiently reliable for low-cost
unmanned spacecraft if some modifications are made. This
is especially true for unmanned rovers.

Key Implications of two typical spacecraft requirements

(1) In light of general requirement (1) for autonomous on-
board recovery a considerable amount of software and
possibly some support hardware will need to be
developed for Maestro-enhanced to implement this
recovery process.

(2) In order to meet acceptable levels of general
requirement (2) for correct outputs, additional error
detection must be implemented in hardware and
software. It is not sufficient to use the standard OS
and timeout checks that come with Maestro because of
their low coverage and long latency. Erroneous
outputs will occur before an error is detected.
Therefore SIFT (Software Implemented Fault
Tolerance) is needed to provide acceptable error
detection and autonomous recovery as described in the
next section.

(3) To provide high computational integrity, it is
necessary to prevent hypervisor state and system
control tables from being damaged by a single error or
fault. These situations are likely to result in a system
re-boot and loss of both state and computation results
as well as considerable delay. This in turn may require
more complex and expensive spacecraft designs to
compensate for these situations. This may imply
replicating execution of hypervisor functions and
redundancy of critical state tables.

(4) For more critical real-time control functions, it will be
necessary to provide time synchronization and run
multiple voted copies. Here it is important to
minimize the probability of a single error or fault
disrupting more than one copy at a time. This implies
reducing the probability of common failures with
added hardware support to prevent violating virtual
memory protection boundaries and minimizing the
probability of common failures by splitting up the chip
into fault containment quadrants.

SIFT – Software Implemented Fault Tolerance (necessary

for Implication 1,2,3 above.)

Software Implemented Fault Tolerance goes back over forty
years with perhaps the first SIFT system being implemented
for uniprocessors at SRI under NASA sponsorship. About a
decade ago, these types of systems were implemented to
provide fault tolerance in computer clusters. One of the
early ones was Chameleon at the University of Illinois [4].
A software system, named “Ghidra” has been developed at

UCLA and partially funded by NASA for multicomputers
that provides a framework for Software Implement Fault
Tolerance (SIFT) in multicomputer clusters [5,6]. It is an
example of a software architecture that should be adaptable
to the Maestro or Maestro-enhanced multicore processors in
a fairly straightforward fashion and at a relatively low cost.
Three processors run three identical copies of a triplicated
Control and Fault Management (CFM) program in different
computers that is responsible for scheduling, collecting error
check results, and activating error/fault recovery in
applications running on themselves and other computers in a
cluster. The CFM controls software agents in all of the
processors that do scheduling, timeout checking and error
collection locally and report to the three CFM processors.
The agents circumvent failure of a CFM replica by voting.
The CFM is capable of scheduling simplex, duplex or
triplicated application processes in different processors.
These application processes do comparison, or voting of
other redundant copies or checking of simplex ABFT-
checked processes and send the results via the agents to the
CFM.

This type of software can be used in multicore processors if
protection of address spaces can be provided and
unexpected interactions between cores is suppressed. If not,
then additional system re-boots and an external recovery
agent may be necessary for a degraded level of fault
tolerance.

The three suggested fault-tolerant approaches for Maestro-
enhanced are outlined below:

1. Basic Maestro-enhanced FT

a) SIFT Software is added, and three tiles serve as the CFM
that manages the cores, collects error messages, and restarts
failed applications. It should be noted that in the Ghidra
system, these three cores can be arbitrarily chosen and can
“float” amongst the processor array. Also note that the CFM
functionality is relatively light weight, occupying a
relatively small number of cycles, thus these cores need not
be dedicated to the CMF and CMF cores may execute other
codes, including applications.

b) The three CFM tiles send heartbeats to an external
hardened restart state machine where they are voted. If two
CFM tiles fail to deliver an OK heartbeat, the Restart
sequencer re-boots the whole system.

c) Error checking and reporting is done by applications that
either run simplex with ABFT acceptance test checking, or
in Replicated Mode (two or more copies are executed and
results compared)

The SIFT software was developed for multicomputers under
the assumptions that each computer could be viewed as a
fault containment region. It assumes reliable message
passing that uses source coding for message authentication

 10

to assure that messages are correct and came from the right
place to maintain interactive consistency.

In a shared memory multicore machine like Maestro, there
are many opportunities for single errors to affect more than
one processor, and circumvent the software barriers for error
propagation provided by messages (e.g., a transient on the
common clock, or errors that violate virtual memory
boundaries, or errors in cache coherency).

In Maestro, single bit errors can do major computational
damage. The mesh networks are not protected against
errors (i.e., parity), allowing wrong data to be sent to
memory, and destination addresses are not protected,
allowing reads and writes to wrong places – including into
other virtual memory spaces. The source tile address is not
included in packets, making authentication impossible. The
TLB and many DMA controllers are similarly not protected,
allowing violation of virtual address boundaries.

Although the latches and flip flops are protected by RHBD
standard cells, there are tens of thousands of flip-flops in the
Maestro mesh network, thousands of latches and flip-flops
in DMA controllers and at least hundreds of latches in state
machine controllers that are not protected by secondary data
integrity checks. All of these can lead to unexpected error
propagation or violation of virtual memory protection
boundaries.

So What Does This Mean?

If SIFT is implemented on the existing Maestro, it can
greatly reduce the number of incorrect outputs, but there
will be a significant number of error cases where state
recovery cannot be achieved and the system must be
reloaded and re-booted, and the loss of computations may
require ground intervention. It may even hang under some
circumstances.

By i) improving the error detection capabilities, ii)
providing better capabilities for implementation an
underlying reliable communications layer, iii) providing
greatly improved fault isolation and reducing the probability
of catastrophic single failure, and iv) providing a better
mechanism for isolating permanent faults and quickly and
automatically working around them, the reliability, and
overall error recovery time can be improved.

Maestro is only partially fault-tolerant, so it is important to
ask the question “can additional fault tolerance be added to
a future Maestro-Enhanced design that will make a machine
that is more suited to critical applications?” Some suggested
fault tolerance improvements, derived from the discussion
above, are listed below:

(1) Add error detection (e.g. parity) to all word buffers of

switches to detect address and data errors in packets
and reduce error-induced violations of virtual spaces.

(2) Provide traceability in the switch network to see where
an error occurred to allow location of intermittent
faults.

(3) Add error detection (e.g., parity) to Registers in DMA
controllers and to the Translation Lookaside buffer to
prevent virtual address boundary violations.

(4) Use Error Correcting Code in the write back second
level cache to allow error correction of level 1 and
level 2 cache errors without interrupting the processor
or requiring a program rollback.

(5) The source ID should be included in all packets to
allow authentication and creation of a reliable
communications layer for SIFT.

(6) Interleave memory scrubbing rather than requiring a
processing halt when this occurs.

(7) Augment the routing algorithm to i) allow packets to
be re-routed through an intermediate destination to
work around failed tiles and links and not isolate
communications between tiles, ii) to allow a tile to
send a message redundantly through disjoint paths

(8) To prevent error propagation, partition tiles into
regions that memory writes cannot cross – reads and
message passing are unrestricted. Partition voted real-
time processes across regions.

(9) Augment the chip design to minimize the probability
of a single fault from disabling the whole chip, or a
transient error from affecting multiple sites.

Adding parity protection to the TLB, to the networks, and to
DMA controllers greatly reduces the probability that an
error will cause violation of virtual address protection
boundaries. This prevents the accumulation of latent errors
that often make recovery difficult and can bring down the
CFM, thus requiring a reboot.3

In order to recover from an intermittent fault in the switch
network, it is necessary to identify where errors occur and
keep track of whether certain errors in certain switches are
occurring frequently in order to isolate and work around the
faulty hardware. By adding error detection to internal
packets, it is possible to trace to the switch where an error
occurred.

The suggested additional packet routing mode allows a tile
to use a physically different path in order to work around
permanent tile or link failures. This allows some computing
to continue after such a fault has occurred and thus the

3 Some packet coding could be done in software, as could addition of a
source ID. However the two internal networks are hardware controlled so a
hardware fix is necessary. Adding parity on words in a uniform fashion is
advantageous for all networks, and would be faster than requiring extra
software for each message. Message re-routing requires hardware to be
efficient.

 11

possibility of continuing after a permanent fault without
bringing down and reprogramming the Maestro-enhanced.

The suggested changes above will improve error coverage
by detecting many errors sooner than they would be
detected otherwise by software (ABFT/Replicated.), make
recovery actions more effective, and make the SIFT more
stable.

This approach greatly reduces the probability of errors
causing violation of physical and virtual boundaries, but
when a core runs the hypervisor, the hypervisor is
unprotected. Therefore it is possible for an error that occurs
(when the hypervisor is running in unprotected mode) to set
up wrong TLB pointers or to damage the system tables on
which all tiles and I/O devices depend. Additional work is
needed on protecting the hypervisor.

Maestro-enhanced for Real Time and Protection of Control

and Fault Management

The idea (see 8 above) of separating the tiles into regions
where memory writes cannot cross a region partition is
especially useful in implementing triplicated and voted
processes such as real-time applications, Control and Fault
Management (CFM), and possibly protecting the
hypervisor. There real time processes are block redundant
with each copy implemented in a different region. This
prevents a processing error from affecting more than one
copy.

This hardwall can be implemented dynamically under
control of the hypervisor or a Ghidra type fault tolerant
cluster manager middleware, and/or it may be hard-designed
into the basic architecture. A potentially advantageous
Maestro partitioning, for example, would be to partition the
array into four quadrants with each quadrant ‘owning’ a
memory interface a gigabit Ethernet port and a XAUI port.

This goes as far as possible in matching, from a fault
tolerance standpoint, the multicomputer environment for
which SIFT was designed. CFM replicas are separated into
fault containment regions where erroneous software
(including the hypervisor) cannot damage other quadrants.
Message authentication is made possible by the changes in
(2) Augmented Maestro-enhanced above.

The philosophy here is to make a relatively inexpensive
change to the architecture that makes stronger fault-
containment domains to allow real time control and to
improve dependability of the CFM – which is at the heart of
SIFT.

Since the tiles, memory, and I/O of Maestro-enhanced
would share common logic for clocks and overall chip
control, as well as a common piece of silicon, package,
board and power supplies, there are still single faults that
can completely disable the system. The design of such a
system should strongly protect these circuits by use of

extended RHBD and hardware implemented fault tolerant
techniques to minimize the probability of those single point
failures occurring

6. CONCLUSION

The Boeing Maestro development has demonstrated a low
cost methodology of radiation hardening a commercial
many-core processor. The SEU rate that has been achieved
has not yet been fully determined, but preliminary results
indicate that the SEU error rate of a processor core or other
subsystem of equivalent complexity has been reduced to
somewhere in the neighborhood of typical radiation-
hardened uniprocessors previously used in space. It should
enable very high performance on-board processing for a
number of upcoming space missions, and it may have a
revolutionary impact.

The success of the Maestro development contrasted with the
discussion in this paper also points out an essential
conundrum in achieving fault-tolerance in these complex
technologies. To put them into space at all requires building
upon the intellectual property, expertise, and tens, if not
hundreds of millions of dollars of investment of private
industry for high volume commercial applications. For their
market, dependability is valued, but fault tolerance must be
traded off against performance. The degree to which their
designs can be modified, by an outside agent that translates
them to radiation-hardened chips, is limited by cost,
computer architecture expertise, and knowledge of the
original design.

If this is done, it is apparent that a modern, high
performance computer, providing orders of magnitude
improvement in spacecraft onboard computing can be
developed at a relatively low cost (1s to low 10s of millions
of dollars), providing concomitant improvements in
spacecraft performance, mission science return, and reduced
mission cost and risk across a broad range of science,
exploration, defense and commercial applications.

ACKNOWLEDGEMENTS

The work described in this publication was performed at the
Jet Propulsion Laboratory, California Institute of
Technology, under contract from the National Aeronautics
and Space Administration. Portions of this work were also
performed by the Boeing Corporation under the OPERA
program.

 12

REFERENCES

[1] Wentzlaff, D.; Griffin, P.; Hoffmann, H.; Liewei Bao;
Edwards, B.; Ramey, C.; Mattina, M.; Chyi-Chang
Miao; Brown, J.F.; Agarwal, A.;. “On-Chip
Interconnection Architecture of the Tile Processor”, IEEE
Micro, September-October 2007, pp. 15-31.

[2] Saurabh Dighe, et. al, “Lessons Learned From The 80-
Core Tera-Scale Research Processor,” Intel® Technology
Journal | Volume 13, Issue 4, 2009

[3] Malone, Michael, “OPERA RHBD Multi-core”
Presentation at Military and Aerospace Programmable
Logic Devices (MAPLD). 2009

[4] Z. Kalbarczyk, R. K.Iyer, S. Bagchi, and K. Whisnant,
‘‘Chameleon: A Software Infrastructure for Adaptive
Fault Tolerance,’’ IEEE Transactions on Parallel and
Distributed Systems, vol.10, no.6, pp.560-579 (June
1999)

[5] Daniel Goldberg, Ming Li, Wenchao Tao, and Yuval
Tamir, “The Design and Implementation of a Fault-
Tolerant Cluster Manager,” Computer Science
Department Technical Report CSD-010040, University of
California, Los Angeles, CA (October 2001).

[6] Ming Li, Fault-Tolerant Cluster Management,
Ph.D..Dissertation, University of California at Los
Angeles, 2006.

BIOGRAPHY

Carlos Y. Villalpando is a Senior
Member of Technical staff in the
Advanced Computer Systems and
Technologies group at the Jet
Propulsion Laboratory. He is
currently a digital designer for

advanced computing techniques for machine
vision applications in FPGAs as well as system
designer and programmer for machine vision
tasks on multicore processors. He earned his
Bachelor of Science degree in Electrical
Engineering, Computer Block at the University of
Texas at Austin in 1996 and a Master of Science
in Electrical Engineering-VLSI at the University
of Southern California in 2003. He has been a
member of the JPL community continuously since
1993 and has worked primarily on Technology
development tasks.

Raphael Some manages the
AAPS High Performance
Computing task at JPL. His other
duties at JPL include: avionics
technologist for the New

Millennium Program; leader of the Technology
Review Board for the ST8 Dependable
Multiprocessor project; and leader of JPL’s
Advanced Avionics Research and Technology
Initiative. Previously at JPL, Raphael was the
Chief Engineer for the Remote Exploration and
Experimentation Project and Principle
Investigator of the Smart Sensor Web technology
development project. His experience prior to JPL
includes the development of fault tolerant space
based supercomputers as well as a variety of
avionics and signal processing systems for both
commercial and military applications.

Dr. David Rennels received the
B.S.E.E. degree from Rose Hulman
Institute of Technology in 1964, the
M.S.E.E. from Caltech in 1965, and
the Ph.D. in Computer Science from
UCLA in 1973. He has been
principal investigator of research

projects in fault-tolerant computing sponsored by
the Aerospace Corporation, NSF, ONR, Hughes
Aircraft, and TRW at UCLA. He has also been
responsible for the design and experimental
validation of several fault- tolerant computers
at the Jet Propulsion Laboratory. Dr.
Rennels was the general chairman of the 12th
International Symposium on Fault-Tolerant
Computing in 1982. He is a member of the IFIP
Working Group 10.4 on Reliable Computing and
Fault-Tolerance, and was chairman of the IEEE
Computer Society Technical Committee on Fault-
Tolerant Computing in 1988 and 1989. His
research interests are computer architecture and
fault tolerant computing. Professor Rennels was
Vice-Chair of Undergraduate Affairs for the
Computer Science Department.

